奇文啦

手机浏览器扫描二维码访问

对火星轨道变化问题的最后解释(第2页)

ThevariationofeccentricitiesandorbitalinclinationsfortheinnerfourplanetsintheinitialandfinalpartoftheintegrationN+1isshowninFig。4。Asexpected,thecharacterofthevariationofplanetaryorbitalelementsdoesnotdiffersignificantlybetweentheinitialandfinalpartofeachintegration,atleastforVenus,EarthandMars。TheelementsofMercury,especiallyitseccentricity,seemtochangetoasignificantextent。Thisispartlybecausetheorbitaltime-scaleoftheplanetistheshortestofalltheplanets,whichleadstoamorerapidorbitalevolutionthanotherplanets;theinnermostplanetmaybenearesttoinstability。ThisresultappearstobeinsomeagreementwithLaskars(1994,1996)expectationsthatlargeandirregularvariationsappearintheeccentricitiesandinclinationsofMercuryonatime-scaleofseveral109yr。However,theeffectofthepossibleinstabilityoftheorbitofMercurymaynotfatallyaffecttheglobalstabilityofthewholeplanetarysystemowingtothesmallmassofMercury。Wewillmentionbrieflythelong-termorbitalevolutionofMercurylaterinSection4usinglow-passfilteredorbitalelements。

Theorbitalmotionoftheouterfiveplanetsseemsrigorouslystableandquiteregularoverthistime-span(seealsoSection5)。

3。2Time–frequencymaps

Althoughtheplanetarymotionexhibitsverylong-termstabilitydefinedasthenon-existenceofcloseencounterevents,thechaoticnatureofplanetarydynamicscanchangetheoscillatoryperiodandamplitudeofplanetaryorbitalmotiongraduallyoversuchlongtime-spans。Evensuchslightfluctuationsoforbitalvariationinthefrequencydomain,particularlyinthecaseofEarth,canpotentiallyhaveasignificanteffectonitssurfaceclimatesystemthroughsolarinsolationvariation(cf。Berger1988)。

Togiveanoverviewofthelong-termchangeinperiodicityinplanetaryorbitalmotion,weperformedmanyfastFouriertransformations(FFTs)alongthetimeaxis,andsuperposedtheresultingperiodgramstodrawtwo-dimensionaltime–frequencymaps。Thespecificapproachtodrawingthesetime–frequencymapsinthispaperisverysimple–muchsimplerthanthewaveletanalysisorLaskars(1990,1993)frequencyanalysis。

Dividethelow-passfilteredorbitaldataintomanyfragmentsofthesamelength。Thelengthofeachdatasegmentshouldbeamultipleof2inordertoapplytheFFT。

Eachfragmentofthedatahasalargeoverlappingpart:forexample,whentheithdatabeginsfromt=tiandendsatt=ti+T,thenextdatasegmentrangesfromti+δT≤ti+δT+T,whereδT?T。WecontinuethisdivisionuntilwereachacertainnumberNbywhichtn+Treachesthetotalintegrationlength。

WeapplyanFFTtoeachofthedatafragments,andobtainnfrequencydiagrams。

Ineachfrequencydiagramobtainedabove,thestrengthofperiodicitycanbereplacedbyagrey-scale(orcolour)chart。

Weperformthereplacement,andconnectallthegrey-scale(orcolour)chartsintoonegraphforeachintegration。Thehorizontalaxisofthesenewgraphsshouldbethetime,i。e。thestartingtimesofeachfragmentofdata(ti,wherei=1,…,n)。Theverticalaxisrepresentstheperiod(orfrequency)oftheoscillationoforbitalelements。

WehaveadoptedanFFTbecauseofitsoverwhelmingspeed,sincetheamountofnumericaldatatobedecomposedintofrequencycomponentsisterriblyhuge(severaltensofGbytes)。

Atypicalexampleofthetime–frequencymapcreatedbytheaboveproceduresisshowninagrey-scalediagramasFig。5,whichshowsthevariationofperiodicityintheeccentricityandinclinationofEarthinN+2integration。InFig。5,thedarkareashowsthatatthetimeindicatedbythevalueontheabscissa,theperiodicityindicatedbytheordinateisstrongerthaninthelighterareaaroundit。WecanrecognizefromthismapthattheperiodicityoftheeccentricityandinclinationofEarthonlychangesslightlyovertheentireperiodcoveredbytheN+2integration。Thisnearlyregulartrendisqualitativelythesameinotherintegrationsandforotherplanets,althoughtypicalfrequenciesdifferplanetbyplanetandelementbyelement。

4。2Long-termexchangeoforbitalenergyandangularmomentum

Wecalculateverylong-periodicvariationandexchangeofplanetaryorbitalenergyandangularmomentumusingfilteredDelaunayelementsL,G,H。GandHareequivalenttotheplanetaryorbitalangularmomentumanditsverticalcomponentperunitmass。LisrelatedtotheplanetaryorbitalenergyEperunitmassasE=?μ22L2。Ifthesystemiscompletelylinear,theorbitalenergyandtheangularmomentumineachfrequencybinmustbeconstant。Non-linearityintheplanetarysystemcancauseanexchangeofenergyandangularmomentuminthefrequencydomain。Theamplitudeofthelowest-frequencyoscillationshouldincreaseifthesystemisunstableandbreaksdowngradually。However,suchasymptomofinstabilityisnotprominentinourlong-termintegrations。

InFig。7,thetotalorbitalenergyandangularmomentumofthefourinnerplanetsandallnineplanetsareshownforintegrationN+2。Theupperthreepanelsshowthelong-periodicvariationoftotalenergy(denotedasE-E0),totalangularmomentum(G-G0),andtheverticalcomponent(H-H0)oftheinnerfourplanetscalculatedfromthelow-passfilteredDelaunayelements。E0,G0,H0denotetheinitialvaluesofeachquantity。Theabsolutedifferencefromtheinitialvaluesisplottedinthepanels。ThelowerthreepanelsineachfigureshowE-E0,G-G0andH-H0ofthetotalofnineplanets。Thefluctuationshowninthelowerpanelsisvirtuallyentirelyaresultofthemassivejovianplanets。

Comparingthevariationsofenergyandangularmomentumoftheinnerfourplanetsandallnineplanets,itisapparentthattheamplitudesofthoseoftheinnerplanetsaremuchsmallerthanthoseofallnineplanets:theamplitudesoftheouterfiveplanetsaremuchlargerthanthoseoftheinnerplanets。Thisdoesnotmeanthattheinnerterrestrialplanetarysubsystemismorestablethantheouterone:thisissimplyaresultoftherelativesmallnessofthemassesofthefourterrestrialplanetscomparedwiththoseoftheouterjovianplanets。Anotherthingwenoticeisthattheinnerplanetarysubsystemmaybecomeunstablemorerapidlythantheouteronebecauseofitsshorterorbitaltime-scales。Thiscanbeseeninthepanelsdenotedasinner4inFig。7wherethelonger-periodicandirregularoscillationsaremoreapparentthaninthepanelsdenotedastotal9。Actually,thefluctuationsintheinner4panelsaretoalargeextentasaresultoftheorbitalvariationoftheMercury。However,wecannotneglectthecontributionfromotherterrestrialplanets,aswewillseeinsubsequentsections。

4。4Long-termcouplingofseveralneighbouringplanetpairs

Letusseesomeindividualvariationsofplanetaryorbitalenergyandangularmomentumexpressedbythelow-passfilteredDelaunayelements。Figs10and11showlong-termevolutionoftheorbitalenergyofeachplanetandtheangularmomentuminN+1andN?2integrations。Wenoticethatsomeplanetsformapparentpairsintermsoforbitalenergyandangularmomentumexchange。Inparticular,VenusandEarthmakeatypicalpair。Inthefigures,theyshownegativecorrelationsinexchangeofenergyandpositivecorrelationsinexchangeofangularmomentum。Thenegativecorrelationinexchangeoforbitalenergymeansthatthetwoplanetsformacloseddynamicalsystemintermsoftheorbitalenergy。Thepositivecorrelationinexchangeofangularmomentummeansthatthetwoplanetsaresimultaneouslyundercertainlong-termperturbations。CandidatesforperturbersareJupiterandSaturn。AlsoinFig。11,wecanseethatMarsshowsapositivecorrelationintheangularmomentumvariationtotheVenus–Earthsystem。MercuryexhibitscertainnegativecorrelationsintheangularmomentumversustheVenus–Earthsystem,whichseemstobeareactioncausedbytheconservationofangularmomentumintheterrestrialplanetarysubsystem。

ItisnotclearatthemomentwhytheVenus–Earthpairexhibitsanegativecorrelationinenergyexchangeandapositivecorrelationinangularmomentumexchange。Wemaypossiblyexplainthisthroughobservingthegeneralfactthattherearenoseculartermsinplanetarysemimajoraxesuptosecond-orderperturbationtheories(cf。Brouwer&Clemence1961;Boccaletti&Pucacco1998)。Thismeansthattheplanetaryorbitalenergy(whichisdirectlyrelatedtothesemimajoraxisa)mightbemuchlessaffectedbyperturbingplanetsthanistheangularmomentumexchange(whichrelatestoe)。Hence,theeccentricitiesofVenusandEarthcanbedisturbedeasilybyJupiterandSaturn,whichresultsinapositivecorrelationintheangularmomentumexchange。Ontheotherhand,thesemimajoraxesofVenusandEartharelesslikelytobedisturbedbythejovianplanets。ThustheenergyexchangemaybelimitedonlywithintheVenus–Earthpair,whichresultsinanegativecorrelationintheexchangeoforbitalenergyinthepair。

Asfortheouterjovianplanetarysubsystem,Jupiter–SaturnandUranus–Neptuneseemtomakedynamicalpairs。However,thestrengthoftheircouplingisnotasstrongcomparedwiththatoftheVenus–Earthpair。

5±5×1010-yrintegrationsofouterplanetaryorbits

Sincethejovianplanetarymassesaremuchlargerthantheterrestrialplanetarymasses,wetreatthejovianplanetarysystemasanindependentplanetarysystemintermsofthestudyofitsdynamicalstability。Hence,weaddedacoupleoftrialintegrationsthatspan±5×1010yr,includingonlytheouterfiveplanets(thefourjovianplanetsplusPluto)。Theresultsexhibittherigorousstabilityoftheouterplanetarysystemoverthislongtime-span。Orbitalconfigurations(Fig。12),andvariationofeccentricitiesandinclinations(Fig。13)showthisverylong-termstabilityoftheouterfiveplanetsinboththetimeandthefrequencydomains。Althoughwedonotshowmapshere,thetypicalfrequencyoftheorbitaloscillationofPlutoandtheotherouterplanetsisalmostconstantduringtheseverylong-termintegrationperiods,whichisdemonstratedinthetime–frequencymapsonourwebpage。

Inthesetwointegrations,therelativenumericalerrorinthetotalenergywas~10?6andthatofthetotalangularmomentumwas~10?10。

5。1ResonancesintheNeptune–Plutosystem

Kinoshita&Nakai(1996)integratedtheouterfiveplanetaryorbitsover±5。5×109yr。TheyfoundthatfourmajorresonancesbetweenNeptuneandPlutoaremaintainedduringthewholeintegrationperiod,andthattheresonancesmaybethemaincausesofthestabilityoftheorbitofPluto。Themajorfourresonancesfoundinpreviousresearchareasfollows。Inthefollowingdescription,λdenotesthemeanlongitude,Ωisthelongitudeoftheascendingnodeand?isthelongitudeofperihelion。SubscriptsPandNdenotePlutoandNeptune。

MeanmotionresonancebetweenNeptuneandPluto(3:2)。Thecriticalargumentθ1=3λP?2λN??Plibratesaround180°withanamplitudeofabout80°andalibrationperiodofabout2×104yr。

TheargumentofperihelionofPlutoωP=θ2=?P?ΩPlibratesaround90°withaperiodofabout3。8×106yr。ThedominantperiodicvariationsoftheeccentricityandinclinationofPlutoaresynchronizedwiththelibrationofitsargumentofperihelion。ThisisanticipatedinthesecularperturbationtheoryconstructedbyKozai(1962)。

ThelongitudeofthenodeofPlutoreferredtothelongitudeofthenodeofNeptune,θ3=ΩP?ΩN,circulatesandtheperiodofthiscirculationisequaltotheperiodofθ2libration。Whenθ3becomeszero,i。e。thelongitudesofascendingnodesofNeptuneandPlutooverlap,theinclinationofPlutobecomesmaximum,theeccentricitybecomesminimumandtheargumentofperihelionbecomes90°。Whenθ3becomes180°,theinclinationofPlutobecomesminimum,theeccentricitybecomesmaximumandtheargumentofperihelionbecomes90°again。Williams&Benson(1971)anticipatedthistypeofresonance,laterconfirmedbyMilani,Nobili&Carpino(1989)。

Anargumentθ4=?P??N+3(ΩP?ΩN)libratesaround180°withalongperiod,~5。7×108yr。

Inournumericalintegrations,theresonances(i)–(iii)arewellmaintained,andvariationofthecriticalargumentsθ1,θ2,θ3remainsimilarduringthewholeintegrationperiod(Figs14–16)。However,thefourthresonance(iv)appearstobedifferent:thecriticalargumentθ4alternateslibrationandcirculationovera1010-yrtime-scale(Fig。17)。ThisisaninterestingfactthatKinoshita&Nakais(1995,1996)shorterintegrationswerenotabletodisclose。

6Discussion

Whatkindofdynamicalmechanismmaintainsthislong-termstabilityoftheplanetarysystem?Wecanimmediatelythinkoftwomajorfeaturesthatmayberesponsibleforthelong-termstability。First,thereseemtobenosignificantlower-orderresonances(meanmotionandsecular)betweenanypairamongthenineplanets。JupiterandSaturnareclosetoa5:2meanmotionresonance(thefamous‘greatinequality’),butnotjustintheresonancezone。Higher-orderresonancesmaycausethechaoticnatureoftheplanetarydynamicalmotion,buttheyarenotsostrongastodestroythestableplanetarymotionwithinthelifetimeoftherealSolarsystem。Thesecondfeature,whichwethinkismoreimportantforthelong-termstabilityofourplanetarysystem,isthedifferenceindynamicaldistancebetweenterrestrialandjovianplanetarysubsystems(Ito&Tanikawa1999,2001)。WhenwemeasureplanetaryseparationsbythemutualHillradii(R_),separationsamongterrestrialplanetsaregreaterthan26RH,whereasthoseamongjovianplanetsarelessthan14RH。Thisdifferenceisdirectlyrelatedtothedifferencebetweendynamicalfeaturesofterrestrialandjovianplanets。Terrestrialplanetshavesmallermasses,shorterorbitalperiodsandwiderdynamicalseparation。Theyarestronglyperturbedbyjovianplanetsthathavelargermasses,longerorbitalperiodsandnarrowerdynamicalseparation。Jovianplanetsarenotperturbedbyanyothermassivebodies。

Thepresentterrestrialplanetarysystemisstillbeingdisturbedbythemassivejovianplanets。However,thewideseparationandmutualinteractionamongtheterrestrialplanetsrendersthedisturbanceineffective;thedegreeofdisturbancebyjovianplanetsisO(eJ)(orderofmagnitudeoftheeccentricityofJupiter),sincethedisturbancecausedbyjovianplanetsisaforcedoscillationhavinganamplitudeofO(eJ)。Heighteningofeccentricity,forexampleO(eJ)~0。05,isfarfromsufficienttoprovokeinstabilityintheterrestrialplanetshavingsuchawideseparationas26RH。Thusweassumethatthepresentwidedynamicalseparationamongterrestrialplanets(>26RH)isprobablyoneofthemostsignificantconditionsformaintainingthestabilityoftheplanetarysystemovera109-yrtime-span。Ourdetailedanalysisoftherelationshipbetweendynamicaldistancebetweenplanetsandtheinstabilitytime-scaleofSolarsystemplanetarymotionisnowon-going。

AlthoughournumericalintegrationsspanthelifetimeoftheSolarsystem,thenumberofintegrationsisfarfromsufficienttofilltheinitialphasespace。Itisnecessarytoperformmoreandmorenumericalintegrationstoconfirmandexamineindetailthelong-termstabilityofourplanetarydynamics。

——以上文段引自Ito,T。&Tanikawa,K。Long-termintegrationsandstabilityofplanetaryorbitsinourSolarSystem。Mon。Not。R。Astron。Soc。336,483–500(2002)

这只是作者君参考的一篇文章,关于太阳系的稳定性。

还有其他论文,不过也都是英文的,相关课题的中文文献很少,那些论文下载一篇要九美元(《Nature》真是暴利),作者君写这篇文章的时候已经回家,不在检测中心,所以没有数据库的使用权,下不起,就不贴上来了。

热门小说推荐
我是王富贵

我是王富贵

我是王富贵。在大明朝,没有人比我的钱更多,没有人比我的官更大不过要做这两点,首先就要帮朱厚熜坐上龙椅,要帮他保住自己的亲爹。守护最好的朱厚熜,坚决捍卫兴献王的亲爹身份不动摇总结起来,就是两个中二少年的抗争之路,无论有多难,我都要这满朝大臣,烟消云散!读者群284427642...

十方武圣

十方武圣

末日荒土,世宗三年,天下大乱,民不聊生。中央皇朝崩坏,各地群雄割据,门派独立。魔门妖党隐于暗处作乱,帮派相互征伐,混乱不堪。天灾连连,大旱,酷寒,暴雨,虫灾,人民苦苦挣扎,渴求希望与救赎。大乱之中,各...

重生在过去那年

重生在过去那年

赵桐芸没想到,死亡不是终结,只是一个新的开始...

田间宠妻日常:带着空间混七零

田间宠妻日常:带着空间混七零

现代女孩赵芳儿一朝穿越到七十年代,什么?吃不饱,睡不好,买个东西要钱还要票,连出门都要介绍信?!幸好空间在手,钱票?古董?全跑不了,再迎娶一个高富帅,嗯谁说穿越不好?明明这日子美的不得了...