手机浏览器扫描二维码访问
王东来说的滔滔不绝,简单清楚又明了,一看就知道是真的了解这些内容。
韩华在心里其实也逐渐相信起这篇论文是王东来自己写出来的,不过还是挑了几个问题问了起来,“什么是互质关系?”
这个问题很简单,只要看过书都能知道,但是根据课程,王东来还没有学过。
“质数(primenumber)又称素数,有无限个。
一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,换句话说就是该数除了1和它本身以外不再有其他的因数;否则称为合数,如果两个正整数,除了1以外,没有其他公因子,我们就称这两个数是互质关系。
互质关系不要求两个数都是质数,合数也可以和一个质数构成互质关系。”
王东来迅速地回答出来。
韩华紧接着问道:“那你再说说欧拉函数。”
“欧拉函数是指对正整数n,欧拉函数是小于n的正整数中与n互质的数的数目,用φ(n)表示。”
“例如φ(8)=4,因为1357均和8互质。”
“若n是质数p的k次幂,除了p的倍数外,其他数都跟n互质,则数学公式为……”
“若m,n互质,则数学公式为……”
“当n为奇数时,则数学公式为……”
“当n为质数时,则数学公式为……”
对答如流,完全不像是一个刚入学的大一新生,其流利程度在韩华看来,已经不弱于一些大三学生了。
在办公室里面的三位学长,这个时候也停下了手上的动作,认真地听着王东来和鹅韩华的一问一答。
“模反元素。”
“如果两个正整数a和n互质,那么一定可以找到整数b,使得ab-1被n整除,或者说ab被n除的余数是1。
这时,b就叫做a的‘模反元素’。”
“比如3和11互质,那么3的模反元素就是4,因为(3×4)-1可以被11整除。
显然,模反元素不止一个,4加减11的整数倍都是3的模反元素{…,-18,-7,4,15,26,…},即如果b是a的模反元素,则b+kn都是a的模反元素。”
“那欧拉定理呢?”
“欧拉定理是一个关于同余的性质。
欧拉定理表明,若n,a为正整数,且n,a互质,则有a^φ(n)≡1(modn)。”
“假设正整数a与质数p互质,因为φ(p)=p-1,则欧拉定理可以写成a^(p-1)≡1(modp)。”
等王东来说完之后,韩华下意识地鼓起掌来。
“好好好,我确实没想到你会给我这么大的惊喜。”
“先前,你的论文质量很高,我以为不是你写的,所以才这么问你,想看看你究竟懂不懂,倒是没想到你给了我这么大的一个惊喜。”
“你的论文没有问题,论证的过程也很完美,只不过就是有些排版上的小问题以及引用文献时的错误,这些都是小问题,稍微改一下就是了。”
“只不过,你知道你这篇论文真正的价值吗?”
韩华说完之后,便静静地看着王东来,等着他的回答。
我出生时,左手腕上缠着一条蛇骨,骨刺深深插入肉中。十八年后,白水出现在我面前,许诺与我血肉相缠。可结果,却比刮骨更让我生痛。蛇骨性邪,可又有什么比人心更邪?...
云杉,21世纪的女汉子快递员,一场车祸然让她魂穿架空古代,重生成丈夫从军刚死,就被大嫂污蔑勾引大伯愤而撞墙身亡的新寡,一睁眼,与一双胞胎儿女就被逐出家门。拉着两个黑瘦得麻杆似的儿女,看着位于半山腰上与野兽为伴的破屋,看着几亩贫瘠沙地及屋子周围的乱石堆。云杉泪奔这种田模式开启的也太他妈坑爹了!没想到更坑爹的是,...
夏央央20岁的生日礼物是男友和闺蜜一起背叛了她她转身就和全城最金贵的男人顾祁琛领了证。从此一路打怪升级,所向无敌。...
食肉者勇,食谷者智,食气者寿,不食者不死,食香者何如焉?自古以来,凡民燔柴烧香,祭祀祈祷,莫不以香为引,李柃善制香,本为凡世手艺,万万没想到,竟因天赋异禀食香炼魂,凭此开创一方道途,成就香祖。交流群42355392...
整整三天,他强势索取,她默默承受。他滚热的气息洒在她耳际记着你是我的女人!永远都只能是我的玩物!他用最残忍的方法折磨她,也用最甜蜜的方式宠爱她。她以...
岳母好女婿,求求你别离开我女儿岳风,把我们洗脚水倒了。什么岳家柳家岳风柳萱...